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ABSTRACT
Background: The challenges of accurate estimation of energy intake (EI) are well-documented, with self-reported

values 12%–20% below expected values. New approaches rely on gold-standard assessments of the other components

of energy balance, energy expenditure (EE) and energy storage (ES), to estimate EI.

Objectives: The purpose of this study was to evaluate the validity, repeatability, and measurement error of consumer

devices when estimating energy balance in a free-living population.

Methods: Twenty-four healthy adults (14 women, 10 men; mean ± SD age: 30.7 ± 8.2 y) completed two 14-d

assessment periods, including assessments of EE and ES using gold-standard [doubly labeled water (DLW) and DXA] and

commercial devices [Fitbit Alta HR activity monitor (Alta) and Fitbit Aria wireless body composition scale (Aria)], and of EI

by dietician-administered recalls. Accuracy and validity were assessed using Spearman correlation, interclass correlation,

mean absolute percentage error, and equivalency testing. We also applied linear measurement error modeling including

error in gold-standard devices and within-subject repeated-measures design to calibrate consumer devices and quantify

error.

Results: There was moderate to strong agreement for EE between the Fitbit Alta and DLW at each time point (rs = 0.82

and 0.66 for Times 1 and 2, respectively). There was weak agreement for ES between the Fitbit Aria and DXA (rs = 0.15

and 0.49 for Times 1 and 2, respectively). Correlations between methods to assess EI ranged from weak to strong, with

agreement between the DXA/DLW-calculated EI and dietary recalls being the highest (rs = 0.63 for Time 1 and 0.73 for

Time 2). Only EE from the Fitbit Alta at Time 1 was equivalent to the DLW value using equivalency testing.

Conclusions: Commercial devices provide estimates of energy balance in free-living adults with varying degrees of

validity compared to gold-standard techniques. EE estimates were the most robust overall, whereas ES estimates were

generally poor. J Nutr 2021;00:1–9.

Keywords: energy balance, consumer devices, measurement error modeling, energy intake, energy expenditure,

energy storage

Introduction

The challenges of accurate estimation of energy intake (EI) are
well-documented (1–3). Recently, mathematical models have
been formulated based on the principles of the first law of
thermodynamics [rate of energy storage (ES) = rate of EI −
rate of energy expenditure (EE)] (4) that allow researchers to
estimate energy balance. For example, if one is able to accurately
measure 2 of the variables of the energy balance equation (e.g.,
changed ES and rate of EE), it is mathematically possible to
solve for the third (e.g., EI). Based on a variety of existing
data sets containing EE, EI, and changes in ES [e.g., body
composition using a 2-compartment model of fat mass (FM)

and fat-free mass (FFM)] during periods of overfeeding (5) or
caloric restriction (6), researchers have developed and refined
a technique termed the intake-balance method to estimate EI
(7–9). The result is a simple, easy-to-use equation that offers
great promise in the quest for estimating EI using objectively
measured methods.

A current limitation in using the intake-balance method
to estimate EI is the feasibility in measuring EE and ES.
Although both can be accomplished with a high degree of
accuracy, the gold-standard method of assessment [doubly
labeled water (DLW) for EE, DXA for ES] of each is too
costly and resource-intensive for most applications. Consumer
devices for assessing physical activity and body composition are
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affordable, easy to use, and popular (an estimated 45 million
were sold in 2017) (10) but have varying levels of validity and
reliability (11–13). Although market turnover of the devices
generally outpaces scientific validity and reliability output, it is
generally accepted that commercial devices perform adequately
for outcomes such as steps per day and are less valid for minutes
of physical activity (14). There is considerable public interest
in body weight management so it is important to evaluate the
validity of computed estimates of energy balance based on this
methodology using consumer-based devices.

The purpose of this study was to explore the validity of
consumer devices to estimate the 3 components of the energy
balance model (EE, ES, and EI) under free-living conditions.
Our research group has successfully developed a system of
assessment methodologies and statistical techniques that can
accurately assess energy balance and estimate EI using research-
grade but non-gold-standard techniques (15, 16). We sought to
expand these techniques from use with research-grade devices
to consumer devices.

Methods
Design
Twenty-four participants (14 women) were healthy adults aged >21 y
(range: 21–52 y; BMI range: 19.1–34.8 kg/m2) (Supplemental Figure
1). All participants had to have an in-home Wi-Fi network and access
to a smartphone that could operate mobile applications (“apps”).
Sample size was determined using previous estimates by the study
team (16) and review of the existing literature. The sample size
of n = 24 participants would provide estimates with a 2-sided
margin of error of t0.975, df = N−1/

√
N = 0.42 SD at a 95% confidence

level. All study procedures were approved by the Children’s Mercy
Institutional Review Board and all participants provided consent
before data collection. All participants completed the study protocol
between 1 January, 2018 and 31 July, 2018. The protocol included
2 identical 14-d assessment periods, separated by a 14-d washout period
(Figure 1), and included assessments of EE and ES using both gold-
standard and commercial devices. Participants arrived fasted on the
morning of day 0 before 09:00, and immediately provided a urine
sample which served as the background sample for the DLW procedure.
They then changed into hospital scrubs and socks, were measured
on a certified scale and stadiometer for height and weight, and
completed a DXA scan (Lunar iDXA, GE Healthcare) to assess body
composition. Immediately afterwards they were assessed for weight and
body composition using the Fitbit Aria wireless body composition scale
(Fitbit, Inc.; described below), then DLW dosing occurred. Fourteen
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FIGURE 1 Study design. Alta, Alta HR activity monitor; Aria, Aria
wireless body composition scale; DLW, doubly labeled water.

days later, participants assessed their body weight and composition
using the Fitbit Aria in their home, then returned to the laboratory
before 09:00 and repeated the DXA scan. During the period in between,
participants self-assessed their body weight and composition each
morning, upon waking and postvoid, using the Fitbit Aria smart scale.
They also continuously wore a Fitbit Alta HR™ activity monitor (Aria;
Fitbit, Inc.; described below) at all times, including sleeping, except
while showering, bathing, or swimming. Self-reported dietary intake
(described below) was assessed using 3 dietician-administered recalls
occurring over the telephone. This 14-d protocol was repeated in its
entirety after a 14-d washout period.

Measures
The Fitbit Aria is an electric scale which uses bioelectrical impedance
to assess body composition and wirelessly uploads the data to a user’s
Fitbit account. The Fitbit Alta uses a 3-axis accelerometer to track
movement, an altimeter to track change in altitude, and light-emitting
diodes (LEDs) to estimate heart rate. This information, along with
user characteristics such as body weight, sex, and age, are input into
proprietary algorithms to estimate steps; minutes of activity occurring
at sedentary, light, moderate, and very active intensities; and EE, and
are uploaded to a user’s Fitbit account. The study team created user
accounts for all participants using a generic email address without
using their first or last name. All data from both the scale and activity
monitor were then aggregated using a comprehensive data management
platform (Fitabase™, Small Steps Lab LLC) and downloaded at study
completion.

The DLW method was the gold-standard technique used to assess
EE. The dose of DLW administered was 1 g/kg of body weight, which
was consumed from a sterile bottle and followed by drinking 100 mL
of tap water from the same bottle to ensure all of the isotopes were
consumed. On day 0, participants provided a background urine sample
upon arriving in the laboratory, 2–3 samples after the DLW dosing
which were discarded, and a final sample 4.5–5.0 h after dosing. On
day 7, participants collected a sample at home in a collection cup
and stored it in the refrigerator until they returned to the laboratory.
On day 14, the participant arrived in the laboratory and provided
a final urine sample. All samples were logged for date and time of
day collected, separated into aliquots in 10-mL tubes, and stored in
a −80◦C freezer. All samples were sent to the Mass Spectrometry
Core at Pennington Biomedical Research Center at study completion
to determine EE via mass spectroscopic analysis of urine specimens for
deuterium and oxygen-18 (17, 18).

EI (hereafter “reported EI”) was measured concurrently with EE
over a 14-d period using interviewer-administered 24-h dietary recall
interviews (24HRs) utilizing the Nutrient Data System for Research
software (NDSR®, version 2017) (19). Three 24HRs were administered
on randomly selected, nonconsecutive days (including ≥1 weekend day)
to minimize preparation that could bias recall by the participants (20).
The dietary recalls were collected by a team of experienced registered
dietitians using a multipass approach, which utilizes prompting to
reduce food omissions, and standardizes the interview methodology
across interviewers (21). Before data collection, study participants
underwent a brief training session (10–15 min) on how to estimate
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portion sizes of commonly eaten foods, and were provided with a 2-
dimensional, validated food portion visual to assist in identifying the
food amounts consumed (22). Owing to data recording error, dietary
recall data were not recorded for 3 participants during Time 1 and
5 participants during Time 2. In total, dietary recalls were not recorded
for 3 participants at either time point, and 2 participants only recorded
data at Time 2. These participants were excluded from all dietary
analyses. Of those with reported dietary data, 100% completed ≥2 of
3 possible recalls at Time 1 (19 of 21 completed all 3) and Time 2 (18
of 19 completed all 3).

EI (hereafter “calculated EI”) also was estimated over each 14-d
period based on the energy balance equation, represented as:

ES = EI − EE (1)

where ES represents changed body energy stores; EI represents the rate
of EI; and EE represents the rate of EE. When 2 terms of the energy
balance equation are known, it is possible to solve for the third term.
Thus, estimated EI was calculated based on the following validated
equation (6, 15, 23, 24):

calculated EI = 1020
�FFM

�t
+ 9500

�FM
�t

+ EE (2)

where �FFM and �FM represent the change in each variable as
measured by DXA between day 1 and day 14; �t represents days
between the start and end of the assessment period; 1020 represents the
energy density in kilocalories of FFM per kilogram and 9500 represents
the energy density of FM per kilogram, both based on established values
(25); and EE represents daily EE as measured by either DLW or the Fitbit
Alta during the assessment period.

Statistical analyses
Demographic characteristics were summarized by means ± SDs for
all participants and by participants’ gender. EI, EE, and ES measures
obtained from gold-standard and commercial devices were also
summarized by means ± SDs for each time point; body weight and
composition were summarized by time point and by day (days 0 and
14).

Consistency between devices and recalls was evaluated by Spearman
correlation coefficient (rs) and agreement was assessed by absolute
agreement intraclass correlation coefficient (ICC), mean absolute
percentage error (MAPE), and the agreement limits (26) at each time
point. Considering the small sample size, we chose Spearman instead of
Pearson to alleviate sensitivity due to outliers, and applied the small-
sample correction in computing agreement limits (27).

Equivalence between mean energy measures obtained from devices
and self-report (EI only) was evaluated by the two-one-sided-test
(TOST) to formally test the equivalence in group-level agreement (28–
30). In the TOST, an equivalence zone with a lower and an upper bound
[defined as 10% below and above, i.e., 90%–110% of, the mean value
from the gold-standard device here following Calabro et al. (28)] is used
to form 2 composite null hypotheses: the true difference is less than the
lower bound or is above the upper bound. When both null hypotheses
are rejected, one can conclude that the true difference falls within the
equivalence zone, i.e., it is small enough to be claimed as equivalent. For
visualization purposes, we computed 90% (instead of the conventional
95% because of the two-one-sided null hypotheses) CIs for measures
from the commercial device and against the equivalence zone of the
gold-standard device; in this way, the CI should completely fall within
the equivalence zone when the TOST is significant at the 5% level.
As noted by Dixon et al. (29), this differs from traditional hypothesis
testing in that it reverses the traditional null hypothesis to specify that
2 methods are not the same. For the null hypothesis to be rejected (i.e.,
2 methods are not equivalent) in a 95% equivalence test, 90% CIs of
gold-standard or 7 non-gold-standard assessments must be completely
included within a prespecified zone of equivalence [±10% of the mean
in this study, as previously used by Calabro et al. (28)]. This corresponds
to rejecting 2 one-sided tests: a lower end of a 95% CI greater than
a lower boundary (i.e., −10%) of the equivalence zone and an upper
end of a 95% CI smaller than an upper boundary (i.e., +10%) of the
equivalence zone. Considering that failing to reject the null hypothesis

in TOST does not imply the measures were different, we also compared
measures between devices and recall by paired t test with Hedges’ g as
the effect size measure.

The aforementioned analyses used measurements from gold-
standard devices as comparative values and were conducted for each
measure and at each time point separately. We also integrated all
measurements at both time points and applied linear measurement
error modeling (LMEM) (16, 31) which allowed measurement errors
in gold-standard devices and the full usage of information from the
within-subject repeated-measures design. In LMEM, we assumed that
1) true EE and true ES were latent variables following a bivariate
Gaussian distribution; 2) measurements from gold-standard devices
followed Gaussian distributions with mean equal to the true EE and ES
values and with nonzero variance, i.e., gold-standard devices provided
unbiased measurements with measurement error; 3) measurements
from commercial devices followed Gaussian distributions with mean
as a function of true EE and ES, age, sex, and BMI, and with
nonzero variance; and 4) EI, expenditure amount, and metabolism
rate (ES) among the participants remained constant during the data
collection period. Estimation of LMEM parameters was conducted
by Bayesian inference (see Supplemental Method 1 for details and
choices of prior distributions and hyperparameter values). The resulting
posterior medians of true EE and ES were then used to calibrate
gold-standard and commercial devices and to quantify corresponding
measurement errors summarized by root mean square error (RMSE;
each observation was first subtracted from its corresponding posterior
median of true value, then we squared the difference, and then
averaged the squared differences across all participants and time
points).

The analyses were conducted on the statistical software R (R Core
team 2019) version 3.5.2 using the packages irr (32) for ICC at each time
point, equivalence (33) for TOST, and rstan for LMEM (34). Bland–
Altman plots and analysis were conducted in GraphPad Prism version
9.0.0.

Results

Table 1 presents participant characteristics. Table 2 presents
energy balance descriptive data. The Fitbit Aria assessed
body weight as higher than did the laboratory scale and
underestimated FM compared with DXA at each time point,
although these differences were only significant at P < 0.05 on
Time 1, day 0, (body weight) and on Time 1, day 14 and Time
2, days 0 and 14 (FM). FM differences between DXA and the
Fitbit Aria were relatively small for all visits (<0.4 kg) except
day 0 of the first assessment period (1.2 kg); the same pattern
existed for FFM.

Table 3 and Figures 2–4 summarize agreement and con-
sistency between devices and dietary recall. The Fitbit Alta
demonstrated moderate to strong agreement and correlation as
compared to DLW (agreement ICC = 0.81 and 0.64, rs = 0.82
and 0.66 for Times 1 and 2, respectively) (Table 3) with
small degrees of overestimation (mean bias 17 and 76 kcal/d,
MAPE = 9.3% and 12.5%). There was weak agreement for ES
between the Fitbit Aria and DXA at each time point (rs = 0.15
and 0.49 for Times 1 and 2, respectively). Correlations between
various methods to assess EI ranged from weak to strong, with
consistency between the DXA/DLW-calculated EI and dietary
recalls being the highest (rs = 0.63 for Time 1 and 0.73 for Time
2). Agreements between EI estimates from the Fitbit devices
and either DLW/DXA or dietary recalls were quite variable by
each time point. The correlation between Fitbit devices and
DLW/DXA was 0.27 at Time 1, but improved to 0.53 at Time 2.
The opposite was true for Fitbit devices and dietary recalls, with
moderate agreement at Time 1 (rs = 0.63) but weak agreement
at Time 2 (rs = 0.42). Bland–Altman plots are presented in
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TABLE 1 Participant characteristics overall and by sex1

Characteristics All (n = 24) Women (n = 14) Men (n = 10)

Age, y 30.7 ± 8.2 29.5 ± 6.2 32.4 ± 10.6
Height, cm 171.8 ± 7.8 168.3 ± 7.8 176.7 ± 4.5
Body weight, kg 73.1 ± 11.6 68.4 ± 10.0 79.6 ± 10.6
BMI, kg/m2 24.8 ± 4.0 24.3 ± 4.6 25.5 ± 3.0
Body fat,2 % 29.0 ± 10.0 33.7 ± 8.8 22.5 ± 7.8

1Values are means ± SDs.
2DXA day 0.

Figure 2 for EE and ES and in Figure 3 for EI. Bias (the mean of
the differences) varied considerably based on device and time
point. For example, bias was low for EE at Times 1 and 2
between DLW and the Fitbit Alta (−17.1 and −76.1 kcal/d,
respectively), whereas it was quite high at Time 1 for ES but
not at Time 2 (337.6 and −16.8 kcal/d, respectively). For EI
(Figure 3), the lowest bias was between the Fitbit devices and
dietary recall at Time 1 (−19.7 kcal/d) although a clear inverse
relation existed, whereas the highest bias was between the gold-
standard and Fitbit devices at Time 1 (320.0 kcal/d) although
this relation was much lower at Time 2 (−92.8 kcal/d).

Table 4 presents interclass correlations between the gold-
standard and commercial devices. Similar associations were
observed at each time point as described with Spearman
correlations. In addition, when both time points were combined,
data suggested the agreement between devices was excellent for
EE (0.76), weak for ES (0.27), and fair for calculated EI (0.44)
according to Cicchetti (35).

Results of testing for difference and equivalence are
presented in Table 4 and Figure 4 (complete data and values
are available in Supplemental Table 1). Hedges’ g (in absolute
value) ranged from 0.02 to 0.38 (Table 4). The only values

that appeared equivalent were EE derived from DLW and the
Fitbit Alta: the TOST suggested their “equivalence”(P = 0.0005
and 0.03 at Times 1 and 2, respectively) and the 2-sided
paired t test provided consistent results and did not reject
the null hypothesis of no difference (P = 0.79 and 0.40,
respectively). For other comparisons between devices and with
dietary recalls, both paired t test and TOST failed to reject their
null hypotheses, leaving the results inconclusive. Among them,
Hedges’ g appeared small for EI between Fitbit and recall at
Time 1 (g = 0.02) and for ES between the Fitbit Aria and DXA
at Time 2 (g = 0.03), suggesting that the differences might be
small and a significant TOST might have been achievable if we
had had larger sample sizes.

Finally, Figure 5 presents RMSEs and 95% CIs derived
from LMEM for each assessment technique including both
time points. If our assumptions hold, RMSE suggested that
the gold-standard devices were not free of measurement error,
with greater measurement error in DLW (RMSE = 524 kcal/d)
than DXA (406 kcal/d). The Fitbit Alta demonstrated a similar
level of measurement error as DLW; however, the Fitbit Aria
appeared to have substantially greater measurement error
(875 kcal/d). EI measures inferred from gold-standard and
commercial devices had greater measurement errors (732 and
1026 kcal/d, respectively) than their corresponding EE and ES
measures, which was anticipated because intake was estimated
by the sum of the other 2. Interestingly, EI obtained from dietary
recalls appeared to be more precise than either gold-standard or
commercial devices (624 kcal/d).

Discussion
This study evaluated the utility of the “intake-balance”
methodology using widely used consumer-based devices (Fitbit

TABLE 2 Energy balance descriptive information of healthy adult participants collected during two
14-d assessment periods, Time 1 and Time 21

Time 1 Time 2

Day 0 Day 14 Day 0 Day 14

Body weight,2 kg 73.1 ± 11.6 72.9 ± 11.7 73.1 ± 11.5 72.9 ± 11.5
Body weight,3 kg 73.6 ± 11.8∗ 73.1 ± 12.0 73.3 ± 11.2 73.1 ± 11.4
FM,4 kg 21.4 ± 8.7 21.2 ± 8.4 21.1 ± 8.3 21.0 ± 8.4
FM,3 kg 20.2 ± 7.8 19.8 ± 7.5∗∗ 19.8 ± 7.5∗∗ 19.8 ± 7.5
FFM,4 kg 52.5 ± 10.4 52.5 ± 10.7 52.8 ± 10.2 52.6 ± 10.5
FFM,3 kg 53.4 ± 9.4 53.4 ± 10.2 53.5 ± 9.7 53.3 ± 9.7
EE,5 kcal/d — 2584 ± 516 — 2490 ± 490
EE,6 kcal/d — 2601 ± 490 — 2567 ± 520
�ES,4 kcal/d — − 145 ± 434 — − 89 ± 413
�ES,3 kcal/d — − 483 ± 1102 — − 72 ± 571
Calc EI,7 kcal/d — 2439 ± 798 — 2402 ± 677
Calc EI,8 kcal/d — 2119 ± 1204 — 2494 ± 839
EI, kcal/d9 — 2117 ± 538 — 2268 ± 625

1Values are means ± SDs. ∗P < 0.05 compared with Laboratory at the same time point; ∗∗P < 0.05 compared with DXA at the
same time point. �ES refers to change over each 14-d assessment period. Alta, Alta HR activity monitor; Aria, Aria wireless body
composition scale; Calc, calculated; DLW, doubly labeled water; EE, energy expenditure; EI, energy intake; ES, energy storage;
FFM, fat-free mass; FM, fat mass.
2Laboratory.
3Fitbit Aria.
4DXA.
5DLW.
6Fitbit Alta.
7DXA/DLW.
8Fitbit Aria/Alta.
9Self-report.
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TABLE 3 Agreement and consistency between devices and dietary recall1

Measure Contrast Time ρ2 ICC3 Mean bias4 MAPE4

95% Agreement limits,
kcal/d

Expenditure Fitbit Alta vs. DLW 1 0.82 0.81 17 9 − 536 571
2 0.66 0.64 76 13 − 677 829

Storage Aria vs. DXA 1 0.15 0.11 − 338 2087 − 2288 1613
2 0.49 0.39 17 1830 − 956 990

Intake Fitbit vs. DLW/DXA 1 0.27 0.26 − 320 44 − 2492 1852
2 0.53 0.50 93 27 − 1247 1433

DLW/DXA vs. Recalls 1 0.63 0.68 220 21 − 743 1182
2 0.74 0.65 102 17 − 872 1075

Fitbit vs. Recalls 1 0.63 0.48 20 44 − 1810 1849
2 0.42 0.49 213 29 − 1021 1446

1Alta, Alta HR activity monitor; Aria, Aria wireless body composition scale; DLW, doubly labeled water.
2Spearman correlation coefficient.
3Absolute agreement intraclass correlation coefficient.
4Mean absolute percentage error.

Alta and Fitbit Aria) to capture the key components. The
primary finding from this study is that commercial devices
have differential validity for capturing the 3 components of
the energy balance model (EE, ES, and EI). EE estimates were
the most robust overall, whereas ES estimates were generally
poor. As a result of this variability, EI calculated using the
intake-balance technique (EE and change in ES) was also highly
variable, with moderate correlations between gold-standard and
commercial devices, yet not statistically equivalent.

EE estimated from the Fitbit Alta at Time 1 showed good
agreement with DLW as evaluated using multiple statistical
techniques (2-sided t test P = 0.79, rs = 0.82, equivalent);
however, the findings from Time 2 were somewhat mixed
(2-sided t test P = 0.40, rs = 0.66, not equivalent). These
findings generally align with previous research, although true
comparisons are difficult to make. Research on consumer
devices often suffers from “research lag,” meaning that
validation studies on a given device are not disseminated until
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FIGURE 2 Bland–Altman plots for ES (A, B) and EE (C, D) estimates between devices at Time 1 (A, C) and Time 2 (B, D). DLW, doubly labeled
water; EE, energy expenditure; ES, energy storage.
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FIGURE 3 Bland–Altman plots for EI estimates between devices and dietary recalls at Time 1 (A, C, E) and Time 2 (B, D, F). DLW, doubly
labeled water; EI, energy intake.

after the devices have been replaced by new versions or models
(36). Fitbit has historically released multiple new consumer
devices or models annually (the Alta was released in 2017 and
discontinued in 2019), so we must look historically to provide
context for validity and reliability. The Fitbit One, a waist-worn
device released in 2012, had an r = 0.76 compared with the
ActiGraph GTX3 for total daily EE (26). The Fitbit Flex, a wrist-
worn monitor released in 2013, had an rs = 0.84 compared with
DLW for free-living activities (13). The Fitbit Surge, a wrist-
worn device with tri-axial accelerometer released in 2015, had
an r = 0.9 and an r2 = 0.82 compared with DLW for total daily
EE, and was not equivalent at 90% CI of the mean (37). The

Fitbit Alta includes a heart rate sensor, although it is not clear
if these additional data improve estimates of EE (38).

Assessments of body weight and ES by the Fitbit Aria
were generally poor compared with the laboratory scale and
DXA, with significant differences observed at time 1 for body
weight and FM (rs = 0.15), at time 2 for FM (rs = 0.49),
and no equivalence at either time point. Very little rigorous
information on the validity of consumer body composition
devices in adults exists in the literature, particularly beyond
1 assessment day (39–41). In general, biopolar (feet-to-feet)
multifrequency devices have good small bias (r2 >0.84) but
wide limits of agreement (>3 kg for FM) (42–45). We observed
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FIGURE 4 Equivalence zones for gold-standard devices and 90%
CIs of commercial devices at each time point. Alta, Alta HR activity
monitor; Aria, Aria wireless body composition scale; DLW, doubly
labeled water; EE, energy expenditure; EI, energy intake; ES, energy
storage.

quite poor validity for the Aria during Time 1 which was
somewhat improved during Time 2. This may be due to self-
calibration after initial setup of the device by the participants,
as outlined by the manufacturer: “After movement of the
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FIGURE 5 Root mean square errors and 95% CIs between device
measures and estimates of true measures calculated from linear
measurement error modeling. DLW, doubly labeled water; EE, energy
expenditure; EI, energy intake; ES, energy storage.

scale…up to two consecutive weigh-ins will then be required
before your scale is recalibrated and again displays consistently
accurate measurements.” Although other devices such as MRI
or computed tomography scans are generally considered “gold
standards” to assess body composition, DXA devices generally
have been found to have CVs <1.0% for various body
compartments when repeated within a given measurement
session (46–48).

EI was estimated using the intake-balance technique for both
gold-standard and consumer devices and dietician-administered
24-h recall. As with the other energy balance components the
results for EI were mixed. There were no differences in estimates
observed (P = 0.09–0.94) and some moderate correlations
(0.27–0.73), but no statistical equivalence between any of the
estimates at any time point. This is not surprising given the
variability in assessing EE and ES.

Given the variability that was observed in both the gold-
standard and consumer devices in the present study, a useful

TABLE 4 Energy measures compared by 2-sided paired t test and by TOST1

TOST 2-sided paired t test

Time 95% CI P value 95% CI P value Hedges’ g

Expenditure
Fitbit Alta vs. DLW 1 (−93.6, 127.8) 0.0005 (−116.5, 150.7) 0.79 0.03

2 (−74.6, 226.7) 0.031 (−105.8, 257.9) 0.40 0.15
Storage

Aria vs. DXA 1 (−727.7, 52.6) 0.93 (−808.5, 133.4) 0.15 − 0.38
2 (−177.8, 211.3) 0.59 (−218.0, 251.6) 0.88 0.03

Intake
Fitbit vs. DLW/DXA 1 (−754.8, 114.0) 0.62 (−844.7, 203.9) 0.22 − 0.30

2 (−175.1, 360.7) 0.18 (−230.6, 416.2) 0.56 0.12
DLW/DXA vs. Recalls 1 (4.59, 435.0) 0.53 (−40.9, 480.5) 0.09 0.27

2 (−106.0, 309.1) 0.16 (−149.5, 352.6) 0.41 0.15
Fitbit vs. Recalls 1 (−389.5, 428.8) 0.21 (−476.1, 515.4) 0.93 0.02

2 (−50.5, 475.5) 0.46 (−105.6, 530.6) 0.18 0.29

1Comparisons are (Fitbit − gold-standard) or (gold-standard − recall) or (Fitbit − recall). Alta, Alta HR activity monitor; Aria, Aria wireless body composition scale; TOST,
two-one-sided-test.
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next step would be to use a Bayesian semiparametric approach
to evaluate the measurement error of the techniques, with
the goal of “calibrating” commercial devices and improving
their accuracy (16). This approach has previously been used
in other disciplines, including dietary assessment (31, 49), and
more recently with self-reported physical activity with some
success (50). Given the growth of commercial devices to track
activity and body weight, the resurrection of measurement error
modeling approaches in the area of energy balance is a logical
next step.

There are several strengths of the current study, including
the simultaneous use of gold-standard devices and consumer
devices under free-living conditions (as opposed to a laboratory
setting). In addition, the repeated 14-d protocol allowed for
important analysis for repeatability. Limitations include the
self-calibration of the consumer body weight and composition
scale that occurred during the initial 14-d assessment period
which resulted in larger measurement error during that time. In
addition, dietary recall data were lost for 5 total participants at
Time 1 (2 of them had data at Time 2) owing to laboratory error.
However, the completion rate for the remaining 19 participants
was quite high (97.5%). Another limitation was that the use of
the formula to calculate EI failed to take into account potential
uncertainty. Further investigations are needed to incorporate the
SEs of the regression coefficients and residual variance when
calculating EI.

In conclusion, we observed varying levels of validity and
reliability of consumer devices when measuring energy balance
during free-living conditions compared to gold-standard de-
vices. Whereas estimates of EE from the wrist-worn consumer
devices generally agreed with DLW, estimates for the other
energy balance variables (ES and EI) were much more mixed.
Given the wide adoption of consumer devices and the potential
to inform about population levels of energy balance, future
research should identify the measurement error to improve the
estimates of EE, ES, and EI.
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